创建多线程的方式
- 方式1:继承Thread类
- 方式2:实现Runnable接口
- 方式3:实现Callable接口 (jdk5.0新增)
- 方式4:使用线程池(jdk5.0新增)
1:继承Thread类
- 定义Thread类的子类,并重写该类的run()方法,该run()方法的方法体就代表了线程需要完成的任务
- 创建Thread子类的实例,即创建了线程对象
- 调用线程对象的start()方法来启动该线程
示例代码:
package com.litecode.thread;
//自定义线程类
public class MyThread extends Thread {
//定义指定线程名称的构造方法
public MyThread(String name) {
//调用父类的String参数的构造方法,指定线程的名称
super(name);
}
/**
* 重写run方法,完成该线程执行的逻辑
*/
@Override
public void run() {
for (int i = 0; i < 10; i++) {
System.out.println(getName()+":正在执行!"+i);
}
}
}
测试类:
package com.litecode.thread;
public class TestMyThread {
public static void main(String[] args) {
//创建自定义线程对象1
MyThread mt1 = new MyThread("子线程1");
//开启子线程1
mt1.start();
//创建自定义线程对象2
MyThread mt2 = new MyThread("子线程2");
//开启子线程2
mt2.start();
//在主方法中执行for循环
for (int i = 0; i < 10; i++) {
System.out.println("main线程!"+i);
}
}
}
执行流程
注意:
- 如果自己手动调用run()方法,那么就只是普通方法,没有启动多线程模式。
- run()方法由JVM调用,什么时候调用,执行的过程控制都有操作系统的CPU调度决定。
- 想要启动多线程,必须调用start方法。
- 一个线程对象只能调用一次start()方法启动,如果重复调用了,则将抛出以上的异常
IllegalThreadStateException
。
补充:变形写法(使用匿名内部类对象来实现线程的创建和启动)
new Thread("新的线程!"){
@Override
public void run() {
for (int i = 0; i < 10; i++) {
System.out.println(getName()+":正在执行!"+i);
}
}
}.start();
2:实现Runnable接口
如果我们自定义的类,已经继承了一个类,就没办法继承Thread类时,那么该如何做呢?
在核心类库中提供了Runnable接口,我们可以实现Runnable接口,重写run()方法,然后再通过Thread类的对象代理启动和执行我们的线程体run()方法
步骤如下:
-
定义Runnable接口的实现类,并重写该接口的run()方法,该run()方法的方法体同样是该线程的线程执行体。
-
创建Runnable实现类的实例,并以此实例作为Thread的target参数来创建Thread对象,该Thread对象才是真正 的线程对象。
-
调用线程对象的start()方法,启动线程。调用Runnable接口实现类的run方法。
示例代码:
package com.litecode.thread;
public class MyRunnable implements Runnable {
@Override
public void run() {
for (int i = 0; i < 20; i++) {
System.out.println(Thread.currentThread().getName() + " " + i);
}
}
}
测试类:
package com.litecode.thread;
public class TestMyRunnable {
public static void main(String[] args) {
//创建自定义类对象 线程任务对象
MyRunnable mr = new MyRunnable();
//创建线程对象
Thread t = new Thread(mr, "长江");
t.start();
for (int i = 0; i < 20; i++) {
System.out.println("黄河 " + i);
}
}
}
补充
在启动的多线程的时候,需要先通过Thread类的构造方法Thread(Runnable target) 构造出对象,然后调用Thread对象的start()方法来运行多线程代码,实际上,所有的多线程代码都是通过运行Thread的start()方法来运行的。因此,不管是继承Thread类还是实现
补充:变形写法(使用匿名内部类对象来实现线程的创建和启动)
new Thread(new Runnable(){
@Override
public void run() {
for (int i = 0; i < 10; i++) {
System.out.println(Thread.currentThread().getName()+":" + i);
}
}
}).start();
实现Runnable接口比继承Thread类所具有的优势
- 避免了单继承的局限性
- 多个线程可以共享同一个接口实现类的对象,非常适合多个相同线程来处理同一份资源。
- 增加程序的健壮性,实现解耦操作,代码可以被多个线程共享,代码和线程独立。
3.实现Callable接口(JDK5.0新增)
- 与使用Runnable相比, Callable功能更强大些
- 相比run()方法,可以有返回值
- 方法可以抛出异常
- 支持泛型的返回值(需要借助FutureTask类,获取返回结果)
- Future接口
- 可以对具体Runnable、Callable任务的执行结果进行取消、查询是否完成、获取结果等。
- FutureTask是Futrue接口的唯一的实现类
- FutureTask 同时实现了Runnable, Future接口。它既可以作为Runnable被线程执行,又可以作为Future得到Callable的返回值
- 缺点:在获取分线程执行结果的时候,当前线程(或是主线程)受阻塞,效率较低。
代码举例
//1.创建一个实现Callable的实现类
class NumThread implements Callable {
//2.实现call方法,将此线程需要执行的操作声明在call()中
@Override
public Object call() throws Exception {
int sum = 0;
for (int i = 1; i <= 100; i++) {
if (i % 2 == 0) {
System.out.println(i);
sum += i;
}
}
return sum;
}
}
public class CallableTest {
public static void main(String[] args) {
//3.创建Callable接口实现类的对象
NumThread numThread = new NumThread();
//4.将此Callable接口实现类的对象作为传递到FutureTask构造器中,创建FutureTask的对象
FutureTask futureTask = new FutureTask(numThread);
//5.将FutureTask的对象作为参数传递到Thread类的构造器中,创建Thread对象,并调用start()
new Thread(futureTask).start();
// 接收返回值
try {
//6.获取Callable中call方法的返回值
//get()返回值即为FutureTask构造器参数Callable实现类重写的call()的返回值。
Object sum = futureTask.get();
System.out.println("总和为:" + sum);
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
}
4.使用线程池
线程池相关API
- JDK5.0之前,我们必须手动自定义线程池。从JDK5.0开始,Java内置线程池相关的API。在java.util.concurrent包下提供了线程池相关API:
ExecutorService
和Executors
。 ExecutorService
:真正的线程池接口。常见子类ThreadPoolExecutorvoid execute(Runnable command)
:执行任务/命令,没有返回值,一般用来执行Runnable<T> Future<T> submit(Callable<T> task)
:执行任务,有返回值,一般又来执行Callablevoid shutdown()
:关闭连接池
Executors
:一个线程池的工厂类,通过此类的静态工厂方法可以创建多种类型的线程池对象。Executors.newCachedThreadPool()
:创建一个可根据需要创建新线程的线程池Executors.newFixedThreadPool(int nThreads)
; 创建一个可重用固定线程数的线程池Executors.newSingleThreadExecutor()
:创建一个只有一个线程的线程池Executors.newScheduledThreadPool(int corePoolSize)
:创建一个线程池,它可安排在给定延迟后运行命令或者定期地执行。
代码举例:
class NumberThread implements Runnable{
@Override
public void run() {
for(int i = 0;i <= 100;i++){
if(i % 2 == 0){
System.out.println(Thread.currentThread().getName() + ": " + i);
}
}
}
}
class NumberThread1 implements Runnable{
@Override
public void run() {
for(int i = 0;i <= 100;i++){
if(i % 2 != 0){
System.out.println(Thread.currentThread().getName() + ": " + i);
}
}
}
}
class NumberThread2 implements Callable {
@Override
public Object call() throws Exception {
int evenSum = 0;//记录偶数的和
for(int i = 0;i <= 100;i++){
if(i % 2 == 0){
evenSum += i;
}
}
return evenSum;
}
}
public class ThreadPoolTest {
public static void main(String[] args) {
//1. 提供指定线程数量的线程池
ExecutorService service = Executors.newFixedThreadPool(10);
ThreadPoolExecutor service1 = (ThreadPoolExecutor) service;
// //设置线程池的属性
// System.out.println(service.getClass());//ThreadPoolExecutor
service1.setMaximumPoolSize(50); //设置线程池中线程数的上限
//2.执行指定的线程的操作。需要提供实现Runnable接口或Callable接口实现类的对象
service.execute(new NumberThread());//适合适用于Runnable
service.execute(new NumberThread1());//适合适用于Runnable
try {
Future future = service.submit(new NumberThread2());//适合使用于Callable
System.out.println("总和为:" + future.get());
} catch (Exception e) {
e.printStackTrace();
}
//3.关闭连接池
service.shutdown();
}
}